Full Length Research Paper

Maxent modeling for predicting suitable habitat for threatened and endangered tree *Canacomyrica monticola* in New Caledonia

Sunil Kumar¹* and Thomas J. Stohlgren²

¹1499 Campus Delivery, A204, NESB, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado 80523-1499, USA.

²U.S. Geological Survey, Fort Collins Science Center, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado 80523-1499, USA.

Accepted 26 June, 2009

Distribution data on threatened and endangered species are often sparse and clustered making it difficult to model their suitable habitat distribution using commonly used modeling approaches. We used a novel method called maximum entropy distribution modeling or Maxent for predicting potential suitable habitat for *Canacomyrica monticola*, a threatened and endangered tree species in New Caledonia, using small number of occurrence records (11). The Maxent model had 91% success rate (that is, a low omission rate) and was statistically significant. The approach presented here appears to be quite promising in predicting suitable habitat for threatened and endangered species with small sample records and can be an effective tool for biodiversity conservation planning, monitoring and management.

Key words: Biodiversity conservation, *Canacomyrica monticola*, hotspot, Maxent, New Caledonia, threatened and endangered species, small sample size.

INTRODUCTION

Prediction and mapping of potential suitable habitat for threatened and endangered species is critical for monitoring and restoration of their declining native populations in their natural habitat, artificial introductions, or selecting conservation sites, and conservation and management of their native habitat (Gaston, 1996). But distribution data on threatened and endangered species are often sparse (Ferrier et al., 2002; Engler et al., 2004) and clustered making commonly used habitat modeling approaches difficult.

Species distribution modeling tools are becoming increasingly popular in ecology and are being widely used in many ecological applications (Elith et al., 2006; Peterson et al., 2006). These models establish relationships between occurrences of species and biophysical and environmental conditions in the study area. A variety of species distribution modeling methods are available to predict potential suitable habitat for a species (Guisan and Zimmermann, 2000; Guisan and Thuiller, 2005; Elith et al., 2006; Guisan et al., 2007a,b; Wisz et al., 2008). However, comparatively few predictive models have been used for rare and endangered plant species (Engler et al., 2004) and there are fewer examples of studies using small sample sizes (For example, Pearson et al., 2007; Thorn et al., 2009). Most species distribution modeling methods are sensitive to sample size (Wisz et al., 2008) and may not accurately predict habitat distribution patterns for threatened and endangered species.

Our objectives were to: (1) predict suitable habitat distribution for threatened and endangered tree *Canacomyrica monticola* using a small number of occurrence records to inform conservation planning in New Caledonia; and (2) identify the environmental factors associated with *C. monticola*’s habitat distribution. We used species occurrence records, GIS (geographical information system) environmental layers (bioclimatic and topo-
graphic), and the maximum entropy distribution modeling approach (Phillips et al., 2006) to predict potential suitable habitat for *C. monticola*.

MATERIALS AND METHODS

Target species and occurrence data

We obtained eleven occurrence records of *C. monticola* tree species from Herbert (2006); these records represent the total known distribution of the species. *C. monticola* is a threatened and endangered tree species, endemic to the pacific island group of New Caledonia. It grows in the patches of primary forest on ultramafic soils in the southern parts of Grande Terre, the main island of New Caledonia, one of the world’s 25 biodiversity ‘hotspots’ defined by Myers et al. (2000). New Caledonia has a high level of species richness and endemism (Lowry1998; Jaffre et al., 2004; Lowry et al., 2004; Murienne, 2009) and 14.4% of its plant species are Red Listed by IUCN (IUCN, 2008; Munginger et al., 2008). *Canaco-myrinc* is phylogenetically and biogeographically interesting genus (Pete Lowry II; personal communication). Very little is known about the C. monticola's ecology and habitat distribution, and its habitat is under severe threat due to many factors including deforestation (mainly due to open-cast mining for nickel ore), invasive exotic species, fire, agriculture and grazing (Herbert, 2006; Pascal et al., 2008).

Environmental variables

We considered twenty five environmental variables as potential predictors of the *C. monticola* habitat distribution (Table 1). These variables were chosen based on their biological relevance to plant species distributions and other habitat modeling studies (For example, Kumar et al., 2006; Guisan et al., 2007a, b; Pearson et al., 2007; Murienne et al., 2009). Nineteen bioclimatic variables (Nix, 1986), biologically more meaningful to define eco-physiological tolerances of a species (Graham and Hjmans 2006; Murienne et al., 2009), were obtained from WorldClim dataset (Hijmans et al., 2005; http://www.worldclim.org/bioclim.htm). Elevation (Digital Elevation Model; DEM) data were also obtained from the WorldClim website; 1 km spatial resolution. The DEM data were used to generate slope and aspect (both in degrees) using Environmental Systems Research Institute’s ARC GIS version 9.2, ‘Sufraace Analysis’ function (ESRI, Redlands, California, USA). Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous field (VCF) data representing percent tree cover, percent herbaceous covers, and percent bare cover (Hansen et al., 2003) were acquired from the Global Land Cover Facility (GLCF), University of Maryland (http://glcf.umiacs.umd.edu/data/vcf/) website. Soil data layer for New Caledonia (Murienne et al., 2008) was not used in the analyses because of its coarse resolution. All environmental variables were resampled to 1 km spatial resolution. All the variables were tested for multicollinearity by examining cross-correlations (Pearson correlation coefficient, r) among them based on 211 localities- 11 species occurrence records plus 200 randomly generated samples from the area. Only one variable from a set of highly cross-correlated variables ($r > 0.75$) was included in the model based on the potential biological relevance to the distribution of the species and the ease of interpretation. For example, MODIS tree cover and herbaceous cover were correlated ($r = 0.87$, $P < 0.0001$), we dropped herbaceous cover and included tree cover. Thus, the number of predictor variables was reduced to ten (Table 1).

Modeling procedure

We used a novel modeling method called maximum entropy distr-
Figure 1. Predicted potential suitable habitat for *C. monticola* tree species on Grande Terre, the main island of New Caledonia.

Table 1. Selected environmental variables and their percent contribution in Maxent model for *Canacomryrica monticola* tree species in New Caledonia.

<table>
<thead>
<tr>
<th>Environmental variable</th>
<th>Percent contribution</th>
<th>Source/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation seasonality (coefficient of variation, Bio15)</td>
<td>51.2</td>
<td>WorldClim; Hijmans et al. 2005</td>
</tr>
<tr>
<td>Temperature seasonality (standard deviation x 100, Bio4)</td>
<td>25.8</td>
<td>WorldClim; Hijmans et al. 2005</td>
</tr>
<tr>
<td>Precipitation of coldest quarter (Bio19, degree C)</td>
<td>13.8</td>
<td>WorldClim; Hijmans et al. 2005</td>
</tr>
<tr>
<td>Aspect (degrees)</td>
<td>5.9</td>
<td>Generated in GIS</td>
</tr>
<tr>
<td>Mean temperature of wettest quarter (Bio8, degree C)</td>
<td>2.7</td>
<td>WorldClim; Hijmans et al. 2005</td>
</tr>
<tr>
<td>Precipitation of warmest quarter (Bio18, degree C)</td>
<td>0.5</td>
<td>WorldClim; Hijmans et al. 2005</td>
</tr>
<tr>
<td>MODIS Tree cover (%)</td>
<td>0.0</td>
<td>GLCF; Hansen et al. 2003</td>
</tr>
<tr>
<td>Elevation (m)</td>
<td>0.0</td>
<td>WorldClim; Hijmans et al. 2005</td>
</tr>
<tr>
<td>Slope (degrees)</td>
<td>0.0</td>
<td>Generated in GIS</td>
</tr>
<tr>
<td>MODIS bare cover (%)</td>
<td>0.0</td>
<td>GLCF; Hansen et al. 2003</td>
</tr>
</tbody>
</table>

Note: MODIS is Moderate Resolution Imaging Spectroradiometer; Bio1, Bio2…Bio19 refer to ‘Bioclimatic’ variables obtained from WorldClim dataset- http://www.worldclim.org/GLCF is Global Land Cover Facility, University of Maryland, USA- http://glcf.umiacs.umd.edu/data/vcf/.
The distribution of highly and moderately suitable areas appears to follow the distribution of ultramafic substrates in New Caledonia (Figure 1a in Grandcolas et al., 2008). The parts of the study area predicted in the ‘very low’ suitability class (probability < 0.10) can be interpreted as unsuitable for *C. monticola* (Figure 1). We also calculated total extent of occurrence (EOO, as defined by IUCN, 2001) of *C. monticola* based on the commonly used threshold of 0.5 (That is, the threshold above which the species is more likely to be present; Jimenez-Valverde and Lobo, 2007); it was estimated to be 1,305 km2. This area is close to the ‘manually measured’ EOO of 1,420 km2 for this species by Herbert (2006).

In this study we showed that the habitat distribution patterns for threatened and endangered plant species such as *C. monticola* can be modeled using a small number of occurrence records and environmental variables using Maxent. This study provides the first predicted potential habitat distribution map for a plant species (*C. monticola*) in New Caledonia. Since Maxent is mapping the fundamental niche (different from occupied niche) of the species using bioclimatic variables the suitable habitat for *C. monticola* may be overpredicted in some areas (Pearson 2007; Murienne et al., 2009). However, the information produced during this study is timely and highly relevant given the potential threats to *C. monticola’s* habitat and to overall biodiversity in New Caledonia due to nickel mining, anthropogenic burning, logging, and harmful invasive species (Herbert, 2006; Grandcolas et al., 2008). The potential habitat distribution map for *C. monticola* can help in planning land use management around its existing populations, discover new populations, identify top-priority survey sites, or set priorities to restore its natural habitat for more effective conservation. More research is needed to determine whether the existing protected areas adequately cover suitable habitat for *C. monticola*. The methodology presented here could be used for quantifying habitat distribution patterns for other threatened and endangered plant and animal species in other areas and may aid field surveys and allocation of conservation and restoration efforts.

ACKNOWLEDGEMENTS

We thank Natural Resource Ecology Laboratory at Colorado State University, Fort Collins, for logistical support. Funding was provided by U.S. Geological Survey and NASA grants (NRA-03-OES-03). Comments by Eric Guilbert, Pete Lowry II, Jerome Murienne, Bill Peterman, and two anonymous reviewers substantially improved the manuscript; to all we are grateful. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

REFERENCES

